SERVICE PHONE

400-123-4657
  • 诚信为本,市场在变,诚信永远不变...

行业资讯

当前位置: 首页 > 杏耀动态 > 行业资讯

首发Yolov8优化:Adam该换了!斯坦福最新Sophia优化器,比Adam快2倍

发布时间:2024-07-08 点击量:68

斯坦福2023.5月发表的最新研究成果,他们提出了「一种叫Sophia的优化器,相比Adam,它在LLM上能够快2倍,可以大幅降低训练成本」

论文:arxiv.org/pdf/2305.1434

本文介绍了一种新的模型预训练优化器:Sophia(Second-order Clipped Stochastic Optimization),这是一种轻量级二阶优化器,它使用Hessian对角线的廉价随机估计作为预调节器,并通过限幅机制来控制最坏情况下的更新大小

?该研究设计了一种新的优化器 Sophia,它比 Adam 更适应异构曲率,比 Newton 方法更能抵抗非凸性和 Hessian 的快速变化,并且还使用了成本较低的 pre-conditioner。



加入以下代码

        elif name=='SophiaG':
            optimizer=torch.optim.SophiaG(g[2], lr=lr, betas=(momentum, 0.999), rho=0.04, weight_decay=0.0)
 
? 
? 

?sophia.py代码如下:

import torch
from torch.optim.optimizer import Optimizer
import math
from torch import Tensor
from typing import List, Optional


class Sophia(Optimizer):
    def __init__(self, model, input_data, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, k=10,
                 estimator="Hutchinson", rho=1):
        self.model=model
        self.input_data=input_data
        defaults=dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, k=k, estimator=estimator, rho=rho)
        super(Sophia, self).__init__(params, defaults)

    def step(self, closure=None):
        loss=None
        if closure is not None:
            loss=closure()

        for group in self.param_groups:
            for p in group["params"]:
                if p.grad is None:
                    continue
                grad=p.grad.data
                if grad.is_sparse:
                    raise RuntimeError("Sophia does not support sparse gradients")

                state=self.state[p]

                # state init
                if len(state)==0:
                    state['step']=0
                    state['m']=torch.zeros_like(p.data)
                    state['h']=torch.zeros_like(p.data)

                m, h=state['m'], state['h']
                beta1, beta2=group['betas']
                state['step']+=1

                if group['weight_decay']!=0:
                    grad=grad.add(group["weight_decay"], p.data)

                # update biased first moment estimate
                m.mul_(beta1).add_(1 - beta1, grad)

                # update hessian estimate
                if state['step']% group['k']==1:
                    if group['estimator']=="Hutchinson":
                        hessian_estimate=self.hutchinson(p, grad)
                    elif group['estimator']=="Gauss-Newton-Bartlett":
                        hessian_estimate=self.gauss_newton_bartlett(p, grad)
                    else:
                        raise ValueError("Invalid estimator choice")
                    h.mul_(beta2).add_(1 - beta2, hessian_estimate)

                # update params
                p.data.add_(-group['lr']* group['weight_decay'], p.data)
                p.data.addcdiv_(-group['lr'], m, h.add(group['eps']).clamp(max=group['rho']))

        return loss

    def hutchinson(self, p, grad):
        u=torch.randn_like(grad)
        grad_dot_u=torch.sum(grad * u)
        hessian_vector_product=torch.autograd.grad(grad_dot_u, p, retain_graph=True)[0]
        return u * hessian_vector_product

    def gauss_newton_bartlett(self, p, grad):
        B=len(self.input_data)
        logits=[self.model(xb) for xb in self.input_data]
        y_hats=[torch.softmax(logit, dim=0) for logit in logits]
        g_hat=\\
        torch.autograd.grad(sum([self.loss_function(logit, y_hat) for logit, y_hat in zip(logits, y_hats)]) / B, p,
                            retain_graph=True)[0]
        return B * g_hat * g_hat


class SophiaG(Optimizer):
    def __init__(self, params, lr=1e-4, betas=(0.965, 0.99), rho=0.04,
                 weight_decay=1e-1, *, maximize: bool=False,
                 capturable: bool=False):
        if not 0.0 <=lr:
            raise ValueError("Invalid learning rate:{}".format(lr))
        if not 0.0 <=betas[0]< 1.0:
            raise ValueError("Invalid beta parameter at index 0:{}".format(betas[0]))
        if not 0.0 <=betas[1]< 1.0:
            raise ValueError("Invalid beta parameter at index 1:{}".format(betas[1]))
        if not 0.0 <=rho:
            raise ValueError("Invalid rho parameter at index 1:{}".format(rho))
        if not 0.0 <=weight_decay:
            raise ValueError("Invalid weight_decay value:{}".format(weight_decay))
        defaults=dict(lr=lr, betas=betas, rho=rho,
                        weight_decay=weight_decay,
                        maximize=maximize, capturable=capturable)
        super(SophiaG, self).__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault('maximize', False)
            group.setdefault('capturable', False)
        state_values=list(self.state.values())
        step_is_tensor=(len(state_values) !=0) and torch.is_tensor(state_values[0]['step'])
        if not step_is_tensor:
            for s in state_values:
                s['step']=torch.tensor(float(s['step']))

    @torch.no_grad()
    def update_hessian(self):
        for group in self.param_groups:
            beta1, beta2=group['betas']
            for p in group['params']:
                if p.grad is None:
                    continue
                state=self.state[p]

                if len(state)==0:
                    state['step']=torch.zeros((1,), dtype=torch.float, device=p.device) \\
                        if self.defaults['capturable']else torch.tensor(0.)
                    state['exp_avg']=torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['hessian']=torch.zeros_like(p, memory_format=torch.preserve_format)

                if 'hessian' not in state.keys():
                    state['hessian']=torch.zeros_like(p, memory_format=torch.preserve_format)

                state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=1 - beta2)

    @torch.no_grad()
    def step(self, closure=None, bs=5120):
        loss=None
        if closure is not None:
            with torch.enable_grad():
                loss=closure()

        for group in self.param_groups:
            params_with_grad=[]
            grads=[]
            exp_avgs=[]
            state_steps=[]
            hessian=[]
            beta1, beta2=group['betas']

            for p in group['params']:
                if p.grad is None:
                    continue
                params_with_grad.append(p)

                if p.grad.is_sparse:
                    raise RuntimeError('Hero does not support sparse gradients')
                grads.append(p.grad)
                state=self.state[p]
                # State initialization
                if len(state)==0:
                    state['step']=torch.zeros((1,), dtype=torch.float, device=p.device) \\
                        if self.defaults['capturable']else torch.tensor(0.)
                    state['exp_avg']=torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['hessian']=torch.zeros_like(p, memory_format=torch.preserve_format)

                if 'hessian' not in state.keys():
                    state['hessian']=torch.zeros_like(p, memory_format=torch.preserve_format)

                exp_avgs.append(state['exp_avg'])
                state_steps.append(state['step'])
                hessian.append(state['hessian'])

                if self.defaults['capturable']:
                    bs=torch.ones((1,), dtype=torch.float, device=p.device) * bs

            sophiag(params_with_grad,
                    grads,
                    exp_avgs,
                    hessian,
                    state_steps,
                    bs=bs,
                    beta1=beta1,
                    beta2=beta2,
                    rho=group['rho'],
                    lr=group['lr'],
                    weight_decay=group['weight_decay'],
                    maximize=group['maximize'],
                    capturable=group['capturable'])

        return loss


def sophiag(params: List[Tensor],
            grads: List[Tensor],
            exp_avgs: List[Tensor],
            hessian: List[Tensor],
            state_steps: List[Tensor],
            capturable: bool=False,
            *,
            bs: int,
            beta1: float,
            beta2: float,
            rho: float,
            lr: float,
            weight_decay: float,
            maximize: bool):
    if not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")

    func=_single_tensor_sophiag
    #
    func(params,
         grads,
         exp_avgs,
         hessian,
         state_steps,
         bs=bs,
         beta1=beta1,
         beta2=beta2,
         rho=rho,
         lr=lr,
         weight_decay=weight_decay,
         maximize=maximize,
         capturable=capturable)


def _single_tensor_sophiag(params: List[Tensor],
                           grads: List[Tensor],
                           exp_avgs: List[Tensor],
                           hessian: List[Tensor],
                           state_steps: List[Tensor],
                           *,
                           bs: int,
                           beta1: float,
                           beta2: float,
                           rho: float,
                           lr: float,
                           weight_decay: float,
                           maximize: bool,
                           capturable: bool):
    for i, param in enumerate(params):
        grad=grads[i]if not maximize else -grads[i]
        exp_avg=exp_avgs[i]
        hess=hessian[i]
        step_t=state_steps[i]

        if capturable:
            assert param.is_cuda and step_t.is_cuda and bs.is_cuda

        if torch.is_complex(param):
            grad=torch.view_as_real(grad)
            exp_avg=torch.view_as_real(exp_avg)
            hess=torch.view_as_real(hess)
            param=torch.view_as_real(param)

        # update step
        step_t +=1

        # Perform stepweight decay
        param.mul_(1 - lr * weight_decay)

        # Decay the first and second moment running average coefficient
        exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)

        if capturable:
            step=step_t
            step_size=lr
            step_size_neg=step_size.neg()

            ratio=(exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None, 1)
            param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg)
        else:
            step=step_t.item()
            step_size_neg=- lr

            ratio=(exp_avg.abs() / (rho * bs * hess + 1e-15)).clamp(None, 1)
            param.addcmul_(exp_avg.sign(), ratio, value=step_size_neg)

代码详见和具体步骤如下:

首发Yolov8优化:Adam该换了!斯坦福最新Sophia优化器,比Adam快2倍 | 2023.5月斯坦福最新成果

平台注册入口